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This work presents a framework to impose the audio effects and production style from one
recording to another by example with the goal of simplifying the audio production process. A
deep neural network was trained to analyze an input recording and a style reference recording
and predict the control parameters of audio effects used to render the output. In contrast to past
work, this approach integrates audio effects as differentiable operators, enabling backpropaga-
tion through audio effects and end-to-end optimization with an audio-domain loss. Pairing this
framework with a self-supervised training strategy enables automatic control of audio effects
without the use of any labeled or paired training data. A survey of existing and new approaches
for differentiable signal processing is presented, demonstrating how each can be integrated into
the proposed framework along with a discussion of their trade-offs. The proposed approach
is evaluated on both speech and music tasks, demonstrating generalization both to unseen
recordings and even sample rates different than those during training. Convincing production
style transfer results are demonstrated with the ability to transform input recordings to pro-
duced recordings, yielding audio effect control parameters that enable interpretability and user

interaction.

0 INTRODUCTION

Audio effects are commonly used in audio and video
content creation to manipulate sound attributes such as
loudness, timbre, spatialization, and dynamics [1]. Al-
though audio effects can be powerful tools in the hands
of trained audio engineers, their complexity poses a sig-
nificant challenge for less-experienced users, often requir-
ing a time-consuming adjustment process even for profes-
sionals. To simplify their usage, expert-designed presets
can be used to configure an audio effect, but this only
results in static, content-independent configurations of ef-
fects. Therefore, presets commonly require fine-tuning and
adjustment, without the ability to adapt to variations across
inputs.

Automatic audio production methods aim to overcome
this limitation with analysis and subsequent adaptation of
effects based on an input signal [2]. These methods can
provide intelligent, automatic control of a single effect pa-
rameter, multiple effects, and/or many channels of audio in
a cross-adaptive manner. Such methods may also provide
a range of interfaces, from fully automatic systems to sys-
tems that only provide suggestions. As a result, successful
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automatic audio production systems have the ability not
only to simplify the process for amateurs but also expedite
the workflow of professionals [3].

Automatic audio production systems are commonly cat-
egorized into rule-based systems built on audio engineering
best practices or data-driven machine learning systems [3].
Although rule-based systems have seen success [4], they
are limited by the inability to formalize rules that cover
the diversity arising in real-world audio engineering tasks
[5]. Classical machine learning approaches, on the other
hand, provide greater flexibility but have thus far been lim-
ited by an inability to collect sufficient parametric data
describing audio production in a standardized way [6]. Re-
cently, deep learning approaches have shown promise in
overcoming these challenges, fueling an increasing interest
in data-driven audio production techniques.

Deep learning approaches for automatic audio produc-
tion can be organized into direct transformation, parame-
ter prediction, and differentiable digital signal processing
methods. Direct transformation methods map untreated au-
dio to a desired target and have shown promise in tasks
such as speech enhancement [7], source separation [8], and
audio effect modeling [9—12] but have had limited use for
automatic production due to a lack of interpretable control,
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Fig. 1. Our DeepAFx-ST method imposes the audio effects and production style from one recording to another by example. We use a
shared-weight encoder to analyze the input and a style reference signal, then compare each with a controller that outputs the parameters

of effects that themselves perform style manipulation.

artifacts, and/or computational complexity [12]. Parameter
prediction methods predict the settings of audio effects but
require expensive ground truth parameter data [9] or opti-
mize over an undesirable loss in the parameter domain [13,
14].

Lastly, differentiable signal processing uses neural net-
works to control digital signal processors (DSP) imple-
mented as differentiable operators enabling training via
backpropagation [15]. This approach imposes a stronger
inductive bias by restricting the flexibility of the model,
which may help to reduce the likelihood of processing ar-
tifacts, enable user control and refinement of the model
predictions, and improve computational efficiency. How-
ever, this approach requires manual implementation and
often modification of DSP, imparting high engineering
cost, potentially limiting its application. To work around
this, two alternative methods have been proposed, includ-
ing neural proxies (NP) of audio effects [16] and nu-
merical gradient approximation schemes [17]. However,
given that these approaches were proposed and evaluated
in different tasks, it is difficult to fully understand their
relative performance.

Beyond integrating audio effects as differentiable oper-
ators, a central limitation of deep learning systems for au-
tomatic audio production lies in the difficulty of sourcing
sufficient data for supervised training, requiring both the
unprocessed and final produced recordings and/or parame-
ter data. In addition, the subjective and context-dependent
nature of the audio production process further complicates
the task [18]. Although evidence suggests the existence of
“best-practices” [19], learning these techniques in a super-
vised paradigm is challenging. In particular, these systems
must not only learn how to control effects to achieve a
desired result, they must also implicitly uncover the dis-
tribution of possible styles present within the training data
across different genres and contexts.

In this work, we present DeepAFx-ST, an approach that
can impose the audio effects and production style from one
recording with automatic control of a set of audio effects,
as shown in Fig. 1. Only a short example style recording is
needed at inference, and no labeled training data or retrain-
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ing is needed to adapt to new styles. To do so, we propose
the following:

o The first audio effects style transfer method to inte-
grate audio effects as differentiable operators, opti-
mized end-to-end with an audio-domain loss,

e Self-supervised training that enables automatic au-
dio production without labeled or paired training
data,

¢ A benchmark of five differentiation strategies for
audio effects, including compute cost, engineering
difficulty, and performance, and

¢ The development of novel NP hybrid methods, and
a differentiable dynamic range compressor (DRC).

We find our approach offers several benefits, including
the ability to perform audio effect style transfer for both
speech and music signals, yield interpretable audio effects
control parameters enabling user interaction, and operate
at sampling rates different than those seen during training.
Implementation of our code, a demonstration video, and
listening examples are made available online.!

1 BACKGROUND

1.1 Audio Effects and Production Style Transfer

Relevant works on audio production style transfer in-
clude initial work on controlling a DRC with a multistage
training procedure using neural networks and random for-
est [13], as well as a deep neural network approach to
control a parametric frequency equalizer (PEQ) [14]. Both
works, however, only consider controlling one audio effect
in isolation and use a (quantized) parameter domain loss to
avoid backpropagating through audio effects—a nontriv-
ial task. This approach has notable disadvantages includ-
ing undesirable quantization schemes or loss tuning and
low correlation between parameters and audio, which have
been noted in the context of parameter inference for auto-

! https://csteinmetz1.github.io/DeepAFx-ST/
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matic synthesizer control [20, 21]. Both of these realities
limit performance and generalization across classes of ef-
fects. However, differentiable signal processing provides
the potential to overcome these challenges and has yet to
be investigated for the style transfer task.

1.2 Differentiable Audio Effects

Typically, differentiable signal processors are manually
implemented within automatic differentiation frameworks
[22, 23]. Assuming the mathematical operations in ques-
tion are differentiable, this provides a straightforward way
to integrate DSP operations with neural networks. This ap-
proach, however, requires expert knowledge, design trade-
offs, and can be difficult or impossible to implement exactly.
Existing audio effects implemented in this manner include
infinite impulse response (IIR) filters [24], reverberation
[25], echo cancellers [26], DJ transitions [27], and reverse
engineered effects [28]. These approaches are related to the
growing body of work focused on the construction of audio
synthesis models with differentiable components, which
now include additive [15], subtractive [29], waveshaping
[30], and wavetable [31] synthesizers.

Differentiable audio effects of interest to our work in-
clude the PEQ and DRC—two common audio production
effects. To our knowledge, there is no known past work
on differentiable compressors, but differentiable PEQs do
exist [24]. PEQs are typically constructed with a cascade
of multiple second-order IIR filters, also know as biquads
[32]. Although itis possible to implement differentiable IIR
filters in the time-domain [33], the recursive filter structure
can cause issues as a result of vanishing/exploding gradi-
ents and computational bottlenecks during backpropaga-
tion through time (BPTT) [34]. by = [bok, b1k, b2ilar =
[ao.k, a1k, az.k]

This motivates frequency-domain finite impulse re-
sponse (FIR) approximations [24, 35, 36]. In this case,
the complex frequency response of the k" biquad Hy(¢/®) is
expressed as a ratio of the discrete Fourier transform (DFT)
of the numerator and denominator coefficients:

DFT(by) Yo o b e /"
DFT(ay) Zi:O bn,k e—Jjon ’

The overall response of a cascade of K biquad filters is
then given by the product of their responses Hiys(e/®) =
]_[,f: | Hy(e/®). We can approximate the response using an
FIR filter by evaluating H,y,(¢/*) over a linearly spaced,
zero-padded frequencies of length 2M1°©:2N=D1_ applying
the filter(s) to an input x[n] with N samples in the fre-
quency domain by multiplying with the input X(e/*), and
then performing the inverse DFT to get the output y[n].

Hi(e'®) = ey

1.3 Alternative Differentiation Methods

In contrast to manually implementing differentiable sig-
nal processing operations, three alternative approaches are
of note. In NP approaches, a neural network is trained to
emulate the behavior of a signal processor [37, 38] in-
cluding control parameter behavior using a dataset of in-
put/output measurements. Although most work in this area
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has focused on creating emulations of analog audio effects
[9-12, 39-42], this approach can be used together with a
larger neural network for automatic control of effects, as
was demonstrated with applications in automatic mixing
[16]. Because NP models are composed of neural network
building blocks, they are differentiable by default, but re-
quire accurate emulation to work effectively and can be
computationally complex.

In an effort to reduce inference time complexity and re-
duce approximation error, NP models can be used together
with the original DSP device to create what we call NP
hybrid models [43]. Half hybrid approaches (NP-HH) use
the NP during the forward and backward pass of train-
ing but use the DSP device during inference. Full hybrid
approaches (NP-FH) aim to further reduce approximation
error caused by the NP by using the DSP device during
inference as well as the forward pass during training. In
this case, the NP is used only during the backward pass
where gradient computation is required. Thus far, NP hy-
brid approaches, however, have not been applied in audio
and have only been used in computer vision for hyperpa-
rameter optimization and not in an adaptive manner for
automatic control.

As a third alternative, nondifferentiable DSP implemen-
tations can be used directly with numerical gradient approx-
imation methods, which has been demonstrated in audio
effect modeling, removal of breaths, and music mastering
[17]. In context of controlling audio effects h(x, p) with
input audio x and parameters p € R”, we only need to esti-
mate the partial derivatives for each parameter %h(x, D).
For this, finite differences (FD) [44] perturb each input pa-
rameter forward and backward and evaluate the operator 2P
times for P control parameters. Alternatively, simultaneous
permutation stochastic approximation (SPSA) [45] gradi-
ent estimation only requires two function evaluations per
gradient vector estimate. In this case, the approximate par-
tial derivative with respect to p; is given by the following:

h(x.pi) _ h(x,p+eAP)—h(x, p—eAP)
pi N ’

@

where € is a small, nonzero value, and A” € R isarandom
vector sampled from a symmetric Bernoulli distribution
(AP = £1) [46]. This approach does not require pretrain-
ing or knowledge of the DSP but can be challenging to train
because of the inaccuracies in gradient approximation and
overhead from implementations available only on CPU.

2 PROPOSED METHOD

Our proposed audio production style transfer method
is composed of three components as shown in Fig. 2. A
self-supervised data generation process enables the creation
of input and reference recordings, x; and x,, from a large
dataset of audio D. These input and reference recordings
are generated by processing a source recording through
two different configurations of a chain of audio effects,
resulting in two different production styles. Then a shared
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Fig. 2. The self-supervised training process for our DeepAFx-ST approach. We sample x from a large dataset of recordings D and apply
random augmentations. Recordings with two different styles are produced with randomly configured DSP, which become the input x;

and the style reference x,. We split these recordings in half, and pass

the opposite sections (x; , and x, ;) to shared-weight encoders f;.

Using the concatenated encoder representation e;,, the controller g, estimates parameters p to apply the reference style to the input. DSP,

digital signal processor.

weight encoder fjy is used to extract information about the
production style of the input and reference recordings. This
information is aggregated and then passed to the controller
network g, that is tasked with estimating parameters p to
configure the differentiable audio effects A(x, p) so that the
processed input signal X, matches the style reference x,.

2.1 Self-Supervised Training

Our self-supervised training strategy enables learning
control of audio effects without labeled or paired training
data. Our data generation process is shown on the left of
Fig. 2 and begins by selecting a random audio recording
x from a dataset D. We then create an augmented version
Xaug by applying pitch shifting and time stretching to further
increase diversity. Two versions of this augmented record-
ing are created, x; and x,, each with a different production
style. The recording in the top branch x; becomes the in-
put, and the recording in the bottom branch x, becomes the
style reference. This is achieved by applying a set of audio
effects to both recordings, with each set of effects having
a different random configuration. To ensure that sensible
outputs are produced, the method for sampling random ef-
fect configuration should be carefully tuned, as is common
with data augmentation pipelines.

To train our model to only focus on audio production style
and operate when the content differs between the input and
style reference, we split the recordings x; and x, in half,
generating an a and b section, producing four recordings
Xi.a> Xi,b» Xr g, and x, . During training, we randomly select
either the a or b section to be passed as input and use the
other section as the style reference. To compute an audio-
domain loss, we use the style reference corresponding to the
same section as the input in order to have a paired input and
ground truth with the same content. Typical approaches
to constructing audio datasets often require ground truth
paired recordings or generate them by taking clean record-
ings and degrading them. However, our approach generates
paired data using a dataset of any source material with a
range of quality and recording conditions.
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The process of splitting the recordings does not perfectly
mimic the case at inference, in which the input and refer-
ence recordings come from different sources. However, this
splitting operation helps to further increase the difference
between the input and reference recordings during training,
as opposed to using recordings with the same content. The
process of randomly selecting either the a or b section as
input and reference further increases this diversity by en-
suring that the model cannot rely on the relative temporal
relation of the input and style reference.

2.2 Model Architecture

To carry out the production style transfer task, magnitude
spectrograms from the input and style reference recordings
are fed to a shared-weight convolutional neural network
encoder fy, which produces a time series of embeddings
for each recording. Temporal average pooling is used to
aggregate these embeddings across time, producing a single
embedding of dimension D for both the input ¢; and style
reference e,. These embeddings are then concatenated e;,
and passed to the controller network.

The controller network gy is a basic multilayer percep-
tion (MLP) and is tasked with producing control parameters
p to configure a set of audio effects A(x, p). This network
should consider the information from the encoder about the
production style of the input and the reference. The esti-
mated control parameters should configure the set of audio
effects in such a way that passing the input signal though
the effect chain will produce a recording that matches the
style reference.

2.3 Differentiable Audio Effects

Core to our approach is the integration of audio effects
directly within the computation graph of a neural network.
Learning to control audio effects instead of carrying out
audio processing with a neural network helps us incorpo-
rate signal processing domain-knowledge, impose a strong
inductive bias, reduce processing artifacts, and reduce com-
putational complexity [15]. In contrast to past work [14, 13],
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Fig. 3. Our audio effect signal chain consisting of a 6-band parametric equalizer (EQ) and single-band dynamic range compressor.

we fully integrate audio effects as differentiable operators
or layers with standard automatic differentiation tools and
enable backpropagation through effects during training as
shown with dashed lines in Fig. 2.

We propose backpropagating through audio effects using
five unique differentiation strategies. These include man-
ually implemented automatic differentiation effects (AD),
NP effects (NP), full neural proxy hybrids (NP-FH), half
neural proxy hybrids (NP-HH), and numerical gradient ap-
proximations (SPSA). Although AD, NP, and SPSA meth-
ods have previously been employed in automatic audio pro-
duction tasks, NP-FH has only been used in static image
processing hyperparameter optimization [43], and NP-HH
has not been proposed before. Moreover, all approaches
have never been compared in a unifying manner, leaving
uncertainty around their relative efficacy.

3 EXPERIMENTAL DESIGN

To demonstrate our approach, we focus on the task of
imposing the equalization and loudness dynamics from one
recording to another using a PEQ and DRC as shown in
Fig. 3. This forms the basic signal chain employed by au-
dio engineers with applications in dialogue processing or in
music mastering. We compare performance of our produc-
tion style transfer system using each of the differentiation
strategies introduced in Sec. 2.3, keeping the data genera-
tion and network architecture fixed. By doing so, we seek
to both understand the performance of our production style
transfer approach, as well as the advantages and disadvan-
tages of these differentiation strategies.

3.1 Differentiable Equalizer and Compressor

We implemented a differentiable PEQ following past
work [24] but developed our own novel differentiable DRC.
For our differentiable compressor, we use a traditional feed-
forward DRC, which is in fact composed of differentiable
operations [47]. Similar to PEQs, however, we found direct
implementation of existing compressor designs problem-
atic because of the presence of recursive filters, in this case
due to the smoothing filters for the ballistics:

agyr[n—11+ (1 —ag)xp[n] xp[n] > yr[n—1]
aryrln—1]+ 1 —ag)xr[n] xr[n] < yr[n—1]"

3

yi[n] = {
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where y; [n] is the smoothed gain reduction, x;[n] = xg[n]
— yg[n] is the result of subtracting the output of the gain
computer from the signal envelope, and a4 and ag are the
attack and release time constants. This operation is not
easily approximated with an FIR filter; thus we simplify
our design using a single attack and release time constant
o to create a single-pole IIR ballistics filter:

“

This filter can be approximated using an FIR filter by
employing the same approach as in differentiable PEQs.
Although this modification restricts the capabilities of our
compressor, forcing the effective attack and release times
to be shared, we seek only a basic compressor to show the
complexity in implementing differentiable versions of com-
mon audio effects, which we compare against competing
alternative differentiation strategies.

yvelnl = ayp[n — 114+ (1 — a)xp[n].

3.2 Datasets

We employ our data generation pipeline as described in
Sec. 2 using both speech and music. To test our approach on
speech, weuse train-clean-360,asubsetof LibriTTS
[48], which totals 360 hours of audio at f; = 24 kHz. To test
our approach on music, we use the MTG-Jamendo dataset
[49], which provides over 55,000 songs, which we downmix
to mono and resample to f; = 24 kHz. For both datasets,
we generate a 90/5/5 split of the recordings for training,
validation, and testing. When randomly sampling patches
of audio from a recording, if the selected segment x[n] has a
mean energy below the threshold, % Zflvzl |x[n])? < 0.001,
we continue sampling until a nonsilent segment is found.
To ensure that there is sufficient headroom for processing
within the audio effects, we peak normalize all inputs and
style recordings to —12 dBFS.

3.3 Baselines

Rule-based DSP—Our rule-based DSP baseline (RB-
DSP) consists of an automatic, two-stage process that aims
to mimic the signal chain of the PEQ and DRC. First, an
FIR filtering stage is employed, which aims to transform
the spectral content of the input to match the spectrum
of the style reference. We compute the average magnitude
spectrum of the input and style reference by computing the
short-time Fourier transform (STFT) using a large window
of N = 65,536 and a hop size of H = 16,384, averaging
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across the frames, yielding X; and X,, which are smoothed
using a Savitzky—Golay filter [S0]. We design an inverse
FIR filter with 63 taps using the window method, with a
desired magnitude response given by X = X; /X, sm, Where
X; sm and X, g, are the smoothed average spectra of the input
and the style reference.

The filtered signal is sent to a DRC in which all parame-
ters except for the threshold are fixed. In order to adjust the
amount of compression based on the input signal and the
style reference, the threshold starts at O dB and is lowered
in increments of 0.5 dB. At each iteration, the loudness in
dB LUFS [51] of the output is measured and compared with
the loudness of the style reference. If the difference in the
loudness measurements are below a given threshold (e.g.
0.5 dB LUFS), the process halts. Otherwise, the process
continues until the loudness is within a specific tolerance
or the threshold reaches —80 dB.

End-to-end neural network—As a baseline on the op-
posite end of the spectrum, we evaluate a direct, end-to-end
neural network approach to replace the differentiable signal
processing audio effects. This network utilizes the same ar-
chitecture as our NP approaches but does not use pretrained
weights. Instead, the weights of this model are optimized
during the training of the encoder and controller. The con-
troller still predicts parameters for this network, as in the
case of an NP, because the weights of the network are not
frozen during training. As a result, the model will learn its
own set of control parameters. We evaluate two variants of
this approach, first using a single temporal convolutional
network (TCN) (cTCN 1) and a second using two TCNs
connected in series (CTCN 2), which mimics the setup in
the NP approach.

3.4 Losses

We train both our NP models and production style trans-
fer models using an audio-domain loss. In particular, we
compute our loss using the model output and ground truth
audio from our data generation process with a weighted sum
of the error in time and frequency domains. The time do-
main 1oss Ly is the mean absolute error (MAE) and the
frequency domain loss Lyrq is the multiresolution short-
time Fourier transform loss (MR-STFT) [52, 53]. This loss
is the sum of the L; distance between the STFT of the
ground truth and estimated waveforms measured both in
the log and linear domains, at multiple resolutions, in
this case with window sizes W e [32, 128, 512, 2048,
8192, 32768] and hop sizes H = W/2. The overall loss
is ﬁoveral](j’a y) = Efreq(j\)v )’) +a- ‘Ctime(y’ y)’ where o =
100.

3.5 NP Pretraining

To construct our NP-based models, we utilized a TCN
[54], also known as the feedforward WaveNet [55]. This
model has seen success in modeling distortion [42] and
compressors [16]. In particular, we use a causal TCN [16]
with feature-wise linear modulation (FiLM) [56] to adapt to
the effect control parameters. Our TCN configuration has
4 blocks, a kernel size of 13, a channel width of 64 and a
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dilation factor that grows as a power of 8, where the dilation
factor at block b is d, = [1, 8, 64, 512]. We trained a total
of 4 proxies, one for each of the two effects, with one for
both speech and music. Training examples were generated
by using DSP effects with uniformly random parameters.
We trained each model for 400 epochs, where one epoch
was defined as 20,000 samples, and used the checkpoint
with the lowest validation loss. We used an initial learning
rate of 3 - 10™4, a batch size of 16, and inputs ~3 s (65,536
samples) in length. The learning rate was lowered by a
factor of 10 after the validation loss had not improved for
10 epochs.

3.6 Production Style Transfer Training

After training our NP models, we trained our production
style transfer model using five different audio effects differ-
entiation methods: AD, NP, NP-HH, NP-FH, and SPSA as
well as end-to-end cTCN1 and cTCN2. The encoder oper-
ates on spectrograms using an STFT with a Hann window
of size N = 4,096 and a hop size of H = 2,048. The mag-
nitude of the spectrogram was computed and exponential
compression was applied following |X|°3. The compressed
magnitude spectrogram was then passed into a randomly
initialized EfficientNet B2 CNN [57] with a single input
channel. The final activations were projected to D = 1,024
with a linear layer, followed by temporal mean pooling to
produce a single representation, which was normalized by
the L, norm.

The controller network was implemented as a simple
three-layer MLP, along with PReLU [58] activation func-
tions. At the output of the controller, the hidden represen-
tation was projected into the audio effect control param-
eter space R”, and a sigmoid activation was applied. All
parameters were then denormalized following predefined
minimum and maximum ranges for parameters before they
were passed to the audio effects.

We trained all models for 400 epochs with a batch size
of 6, where a single epoch is defined as 20,000 segments
of audio ~10 s in length (262,144 samples). We used a
learning rate of 10=* for all models, with the exception of
the SPSA models, which required a lower learning rate of
1073 for stability. In both cases, we scheduled the learning
rate such that it is lowered by a factor of 10 at both 80% and
95% through training. We applied gradient clipping with a
value of 4.0 and used an SPSA € of 5 - 1074,

4 RESULTS

4.1 Synthetic Production Style Transfer

We first evaluated on a synthetic production style transfer
task mirroring our training setup. This facilitates the use of
full-reference metrics, because we synthetically generate
style references and as a result have inputs and ground
truth with matching content. Results of the evaluation using
held-out speakers from LibriTTS are shown in Table 1.

As there are no established metrics for evaluating au-
dio production style, we propose a range of metrics. For
a general notion of perceptual similarity, we use Percep-
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Table 1. Synthetic production style transfer with models trained using LibriTTS. Held-out speakers from the LibriTTS dataset are used, whereas utterances from DAPS and VCTK
come from datasets never seen during training. Lower is better for all metrics except PESQ. Best performing models for each metric are shown in boldface.

Speech
LibriTTS DAPS VCTK
Method PESQ STFT MSD SCE RMS LUFS PESQ STFT MSD SCE RMS LUFS PESQ STFT MSD SCE RMS LUFS
Input 3.765 1.187 2.180 687.5 6.983 2.426 3.684 1.179 2151 641.7 6900 2314 3.672 1.254 2.008 8154 7.783 2.532
RB-DSP  3.856 0.943 1.955 4103 4204 1.674 3.787 0917 1.882 399.7 3.705 1.481 3.709 1.101 1911 657.6 5.039 2.018
c¢cTCN 1 4.258 0.405 0.887 1284  2.237 1.066 4.185 0419 0.884 124.6  2.098 1.006 4.181 0.467  0.891 173.8  2.651 1.165
cTCN 2 4.281 0372 0.833 1175 1.927 0.925 4.224 0.391 0.841 113.9 1.886 0913 4.201 0.441 0.856 163.8 2.431 1.086
NP 3.643 0.676 1.405 265.0 2.812 1.340 3.605 0.685 1362 2492 2.732  1.350 3.651 0.737 1.300 321.7 3.166 1.453
NP-HH 3.999 1.038 2.179 4402 5472 2.679 3.903 1.022 2113 4519 5.104 2.535 3.951 1.044 1.930 5915 5.194 2.651
NP-FH 3.945 1.058 2.088 4049 6.820 3.197 3.891 1.037 2.045 3954 6.754 3.117 3.894 1.087 1.934 5140 7.065 3.363
SPSA 4.180 0.635 1.406 219.5 3.263 1.600 4.099 0.645 1.379 213.6  2.989 1.511 4.023 0.730 1.359 301.6 3.535 1.737
AD 4.310 0.388 0.882 111.5 1.828 0.823 4.222 0416 0.895 109.0 1.758 0.799 4.218 0.481 0.924 152.7 2317 1.006

Table 2. Synthetic production style transfer using the MTG-Jamendo dataset. Proxy models (S) were pre-trained using speech from LibriTTS and (M) were trained using music from
the MTG-Jamendo dataset. Lower is better for all metrics except PESQ. Best performing models for each metric are shown in boldface.

Music

MTG-Jamendo (24 kHz)

MTG-Jamendo (44.1 kHz)

MUSDB18 (44.1 kHz)

Method PESQ STFT MSD SCE RMS LUFS PESQ STFT MSD SCE RMS LUFS PESQ STFT MSD SCE RMS LUFS
Input 2927 1.198 6.088 6465 6.695 2518 2874 1.109 4454 7677 6.793 inf 2900 1.252 4342 1088.3 5940 2312
RB-DSP 2.849 0925 4422 2632 4254 1706 2931 0.887 3355 3420 4749 1.882 2994 0821 3.052 3794 4.078  1.665
c¢TCN 1 3402 0547 2294 1609 3.261 1.483 3.168 0.876 2921 4944 4372 2070 3.121 0.896 2956 730.4 4.548  2.231
cTCN 2 3390 0548 2278 1523 2951 1397  3.123 0903 2973 5174 4.084 1.899 3.107 0917 2986 7495 4.208  2.061
NP S 2926  0.787 2.838 2213 2785 1390 2764 1.033 2869 4883 37710 1.824 2.804 0950 2778 742.1 3835 1921
NP M 27765 0.845 3211 2552 3227 1.608 2.699 1.042 2928 497.0 3942 1961 2791 0946 2.800 757.1 4209 2.127
NP-HH (S) 2819 1.092 6.791 3953 6.276 3.032 2.865 1.101 5194 689.2 6.792 3365 2.853 1.165 4.852 1005.7 6.451 3.269
NP-HH (M) 2532 1.166 7.070 5919 5.660 2593 2512 1.148 5385 8549 5940 2740 2493 1.198 5.090 1021.9 5585 2.731
NP-FH (S) 2.833 1.016 5.005 280.8 3377 1.634 2888 0977 3.883 4299 3480 1.709 2.857 1.045 3809 617.3 3932 1971
NP-FH (M) 2.648 1.137 6368 6056 5903 2587 2.625 1133 5512 8446 6417 2876 2575 1225 5450 11725 5973 2913
SPSA 3173 0716  3.024 210.1 2809 1344 3.172 0.759 2458 3862 2839 1311 3.126 0.789 2321 5744 2925 1.394
AD 3355 0488 2149 1447 2167 1.005 3.400 0585 1.824 3044 2425 1.106 3.396 0.608 1.695 456.1 2559 1197
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tual evaluation of speech quality (PESQ) [59], along with
the MR-STFT [52] error, which is a component of the
training objective. To evaluate the ability of the system to
address equalizer-related style components, we report the
mel-spectral distance (MSD), which consists of the error
between melspectrograms using a large window size of W
= 65,536, along with the spectral centroid error (SCE). To
evaluate aspects related to the dynamic range, we consider
the root mean square energy error (RMS) and the perceptual
loudness error (LUFS) [51].

We note our rule-based DSP baseline improves on the
input across all metrics, though not by a significant mar-
gin. Overall, we find strong performance from the AD
method, which performs best on all metrics except MSD,
which is only slightly outperformed by cTCN2. Both cTCN
approaches follow closely behind AD, demonstrating the
strength of end-to-end neural network approaches. The
SPSA model follows closely behind these approaches with
somewhat degraded PESQ and STFT error, yet it outper-
forms all NP methods. Although the NP methods are not
as competitive, both NP-HH and NP-FH outperform NP
in terms of PESQ, likely a result of using a DSP imple-
mentation, which imparts fewer artifacts. However, the NP
approach achieves better performance on all other metrics,
indicating it likely better matches the style reference.

In addition to evaluating on held-out speech from Lib-
riTTS, we also evaluate generalization with speech datasets
not seen during training including DAPS [60], which con-
tains high quality recordings from 20 speakers, and the
larger VCTK [61] dataset, which contains 110 speakers.
We observe a similar trend in performance, yet the cTCN
models slightly outperform AD as compared with on Lib-
riTTS. This indicates our self-supervised training was suf-
ficient for producing models that generalize to speech from
different sources and acoustic conditions.

We also trained the same set of models using music from
the MTG-Jamendo dataset. The result, shown in Table 2,
largely follows a similar trend to the speech experiments
with regards to the differentiation methods, demonstrating
the general nature of our approach. However, it appears
that the music task is somewhat more difficult. We also
compared neural proxies trained on speech (S) or music
(M) and found those trained on music performed slightly
Wworse.

We then investigated operation at sample rates different
than training. To achieve variable sample rate operation,
we resampled the signals passed to the encoder to match
training (24 kHz); however, the audio effects operate at the
sample rate of the input audio (44.1 kHz). First, we evalu-
ated on the MTG-Jamendo test set, and we noticed a signif-
icant drop in performance for the neural-network-based ap-
proaches, which include the cTCNs and NP, because these
models operate at a fixed sample rate. However, the DSP-
based approaches performed significantly better, including
both the AD and SPSA approaches, which performed only
slightly worse than at the training sample rate.

Finally, to test out-of-distribution generalization, we used
music from MUSDBI18 [62]. Although performance does
decrease across most metrics and for all models, the models

J. Audio Eng. Soc., Vol. 70, No. 9, 2022 September

PRODUCTION STYLE TRANSFER

can still perform the task, with SPSA and AD approaches
exceeding the baseline.

4.2 Realistic Production Style Transfer

To simulate a more realistic production style transfer sce-
nario in which the style reference contains not only different
content but also differing sources (e.g., speaker identity or
instrumentation), we construct a realistic production style
transfer evaluation task. We designed five different audio
production “styles,” which are defined by hand-crafted pa-
rameter ranges inspired by commonly used plugin presets.
We generate audio from these five different styles (Tele-
phone, Warm, Bright, Neutral, and Broadcast) by randomly
sampling parametric equalizer and compressor parameters
from these ranges such that each style is audibly unique.
Sampling parameter values randomly provides more varia-
tion within audio examples of the same style, which is more
complex than applying a fixed preset.

To generate examples in each of these styles, we use
speech from DAPS and music from MUSDB18. However,
because we do not have paired ground truth as in the syn-
thetic production style transfer case, we performed our eval-
uation using only nonintrusive metrics that do not require
a matching reference. These metrics measure the error be-
tween high-level audio features, like the MSD, spectral
centroid, RMS energy, and perceptual loudness.

We performed all pairwise production style transfers re-
sulting in 25 configurations, and we performed each config-
uration ten times using different input and output recordings
from each style. Here, we considered only the best perform-
ing methods that produce interpretable control parameters
(NP-HH, SPSA, and AD). To summarize the results of this
evaluation, we aggregated the metrics across all 25 con-
figurations reporting the mean for each to provide a gen-
eral notion of the production style transfer performance, as
shown in Table 3.

On examples from DAPS, all methods including the
baseline improve upon the input, but SPSA and AD clearly
outperform the other approaches across all metrics, with
AD performing the best. In the case of MUSDBI18, the AD
approach further outperforms the others, with the exception
of SCE, where the RB-DSP baseline performs best.

4.3 Parameter Visualization

To demonstrate the ability of our approach to provide
precise control over the effect parameters, we plot both the
overall frequency response of the parametric equalizer as
well as the compressor configuration in Fig. 4. We show
the result of using one utterance from VCTK as the input
with five different style references. Because the utterances
from VCTK are relatively clean and contain little post-
processing, we observed the estimated parameters aligned
with our expectation for the predefined styles. For example,
we find that the telephone style is achieved by reducing
the high and low frequencies while boosting frequencies
around 1 kHz. In terms of compression, we see a clear
trend with the broadcast style using the most aggressive
compression, as expected. While estimating these style pa-
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Table 3. Realistic production style transfer average performance of all pairwise configurations from five predefined styles with
speech from DAPS using the model trained on LibriTSS and music from MUSDB 18 using the model trained on MTG-Jamendo. Best
performing models for each metric are shown in boldface.

DAPS MUSDB18
Method MSD SCE RMS LUFS MSD SCE RMS LUES
Input 104 1041.7 104 3.6 8.4 2607.4 9.4 3.8
RB-DSP 8.9 517.2 5.8 24 6.5 915.4 8.6 3.7
NP-HH S 9.8 636.6 12.9 59 7.0 1512.7 10.0 4.5
SPSA 8.0 360.1 5.1 2.5 55 1297.0 4.6 2.1
AD 7.8 278.1 52 24 4.8 947.6 3.8 1.7
Tele Bright Warm === Broadcast Neutral Table 4. Class-wise F1 scores for five-class style prediction with
-20 Ratio linear classifiers trained on top of audio representations for
= 20 ég speech and music using a single linear layer. Best performing
z \_ 34 2'9 models for each metric are shown in boldface.
% o 4 I [ 38
g - 43
3 —, £ 0 / DAPS (Speech)
20 g0 /7 Features Telephone Bright Warm Broadcast Neutral Avg
10! 103 -80 -60 -40 =20
Frequency (Hz) Input (dB) Random Mel 0.87 0.78 0.73 0.39 0.00 0.55
. ) . . OpenL3 0.19 0.61 0.08 0.10 0.18 0.23
Fig. 4. Estimated parametric equalizer (left) and compressor CDPAM 1.00 .00 079 025 063 073
(right) parameters from our SPSA model with one utterance from
VCTK and five unique style references. SPSA, simultaneous per- NP-HH S 1.00 1.00 1.00 1.00 1.00  1.00
mutation stochastic approximation. SPSA 0.95 098 1.00 0.89 095 096
AD 1.00 1.00 1.00 1.00 1.00  1.00
—_ ) — 2 3 4 MUSDB18 (Music)
o =20 Ratio
= 7 2.2 Features Telephone Bright Warm Broadcast Neutral Avg
% @ 40 24
= g - 2.7
T 4 ,/\ = / 33 Random Mel 0.80 098 0.62 0.17 0.00 0.1
P == & /3.8 OpenL3 0.32 0.66 020 0.17 030 0.33
s © CDPAM 0.89 095 0.66 0.00 0.06  0.51
=20
-80
10! 108 80 —60 —40 —20 NP-HH S 0.98 1.00 0.92 0.59 0.60 0.82
Frequency (lz) Input (dB) SPSA 0.98 1.00 090 0.26 0.00  0.63
AD 0.98 1.00 0.95 0.54 0.50  0.79

Fig. 5. Estimated parametric equalizer (left) and compressor
(right) parameters with our SPSA model using a fixed Broad-
cast style reference. The input VCTK utterance was progressively
modified to increase the high-frequency energy and compression.
SPSA, simultaneous permutation stochastic approximation.

rameters may seem trivial, our system was not trained on
these recordings and has no knowledge of the styles.

As a demonstration of the ability of the model to adapt
to the input signal like an adaptive preset, we processed a
clean recording using a reference from the Broadcast style
while varying characteristics of the input. In this case, the
input signal was modified by progressively increasing the
gain of a high-shelf filter from 0 dB to +24 dB, while
also increasing the amount of compression with a higher
ratio (1.0 to 4.0) and lower threshold (0 dB to —62 dB).
As shown in Fig. 5, the estimated parameters adapt to these
changes in a sensible manner. This results in a progressively
lower boost in the high-shelf filter that was added originally
to achieve the presence of the Broadcast style, while also
increasing the threshold and decreasing the ratio to reduce
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the amount of compression, as the input becomes more
compressed.

4.4 Encoder Representations

In addition to our production style transfer evaluation,
we also investigated the potential utility of the represen-
tations learned by our encoder. To do so, we created a
downstream task of audio production style classification,
where the goal is to classify the style of a recording among
the five styles we created for our realistic style evaluation.
We trained linear logistic regression classifiers, also known
as linear probes, on top of a set of different audio repre-
sentations, a common approach in evaluating the quality
of self-supervised representations [63, 64]. These linear
probes are trained for a total of 400 epochs on a small
dataset with only 60 examples from each of the five styles.
We show class-wise and overall F1 scores on the test set in
Table 4.

As baseline representations, we considered a random
projection of melspectrogram features, along with large
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Table 5. Runtime comparison across differentiation methods
including seconds taken for a single training step, and real-time
factor for inference on CPU (Intel Xeon CPU E5-2623 v3 @
3.00GHz) and GPU (GeForce GTX 1080 Ti). Best performing
models for each metric are shown in boldface.

Train

Method step(s) CPU GPU Parameters Interpretable
RB-DSP - 0.004 - 0 —

¢cTCN1 0438 0.132 0.002 174k -

cTCN2 0.642 0.268 0.005 336k -

NP 0.434 0.277 0.005 336k Vv

NP-HH 0.434 0.003 - 0 Vv

NP-FH  0.434 0.003 - 0 Vv

SPSA 0.413 0.003 - 0 Vv

AD 0.301 0.006 0.001 0 J

pretrained representations including OpenL3 [65], which
is focused on capturing audio content, and CDPAM [66],
which is focused on capturing audio quality, therefore the
most similar to our approach. In addition, we trained linear
probes on representations from the NP-HH, SPSA, and AD
differentiation methods on both speech styles from DAPS
and music styles from MUSDBI18.

In the case of DAPS, the class-wise scores indicated that
CDPAM and our proposed representations were able to cap-
ture the Bright and Telephone styles. Classifying between
Broadcast and Neutral was difficult due to the main differ-
ence between these styles being the presence of more ag-
gressive compression. However, we found that our encoder
representations did not struggle to capture this difference.
Overall, it is clear that representations from our approach
not only capture style elements related to spectral content,
but also signal dynamics, which are not captured well by the
other approaches. We found similar results for both speech
and music, where music was slightly more difficult, likely
due to MUSDBI18 style diversity.

4.5 Computational Complexity

Beyond production style transfer performance, we
benchmark training time per step, CPU/GPU inference
time, and number of parameters for audio effects per
method variant in Fig. 5. To compare the training step,
we measure the time required for both a forward and back-
ward pass when optimizing the system using the same batch
size and input size as training. We found the NP and TCN
approaches impart the highest computational cost because
they feature the use of neural networks for audio process-
ing during both inference and training. However, the NP
hybrids (HP-HH and NP-FH) and SPSA have the lowest
computational cost because they all use only the DSP de-
vice during inference, which is on par with RB-DSP base-
line. The AD approach is twice as slow as the DSP-based
methods but is still far more efficient than any of the neural
network based effects.
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5 DISCUSSION

Our production style transfer approach provides multi-
ple user—interaction paradigms. At a high-level, a user can
supply their own input content and style reference and view
the estimated control parameters. This affords significant
agency but requires the user have a goal and a suitable
reference recording. We can simplify this interaction by
creating adaptive presets that supply a curated, predefined
set of style reference recordings, each with semantic de-
scriptions. Lastly, we can also empower a fully automatic
solution by employing a single, predefined style reference.

When we compare differentiation methods, we note the
AD approach performed the best across most metrics. There
are, however, a number of additional considerations. In par-
ticular, the AD approach is the most manual and demanding
method to implement, commonly requires significant ex-
pertise and design tradeoffs to implement, and can be more
difficult to integrate into on-device inference. In contrast,
generic neural network architectures like our TCN-based
baselines performed well in comparison and are ultimately
more flexible. However, these approaches do not provide
interpretable control and require significant computation,
making them undesirable and difficult to integrate into au-
dio production environments.

Lastly, when we compare against the SPSA and NP meth-
ods, we note they offer interpretable control (similar to AD)
but do not require knowledge or re-implementation of the
underlying system (black-box), do not require explicit dif-
ferentiation, enable the use of the original DSP at inference,
and typically require less computation. We observed, how-
ever, NP and SPSA methods have other drawbacks. We
found SPSA was more susceptible to training instability
and required careful tuning of the € hyperparameter and
learning rate. And, although the NP variants were promis-
ing, we found they were unable to achieve performance
on par with the other approaches. We hypothesize this was
caused by inaccuracy in the proxy networks, especially for
the parametric equalizer. Strict NP approaches also require
laborious pre-training and design.

We conclude that the preferred differentiation strategy
for our task and similar automatic production methods is
application dependent. Future research directions include
the design of better NP methods, a reusable differentiable
audio effects library, the ability for dynamic audio signal
chain construction, and/or improved numerical gradient ap-
proximation methods.

6 CONCLUSIONS

Our DeepAFx-ST method imposes the production style
from one recording to another, enabling automatic audio
production and adaptive presets. We demonstrated the ap-
plicability of our approach in both speech and music tasks
and performed an extensive comparison of a diverse range
of differentiable signal processing methods. We proposed a
categorization of existing approaches for differentiable sig-
nal processing, and also introduced differentiable DRC and
NP hybrid approaches. Our approach demonstrated con-
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vincing performance on both the synthetic and realistic pro-
duction style transfer tasks, while estimating interpretable
audio effect controls, operating at variable sample rates,
and producing representations that accurately reflect pro-
duction style.
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